A comparison of the relative biological effectiveness of low energy brachytherapy source in breast tissue: A Monte Carlo study.

> Shane White Maastro Clinic, Netherlands

Conflict of interest

This work was supported by Xoft[®]

Introduction

Purpose Background ■ RBE ■ LET DNA damage Workflow Electron spectrum ■ RBE Conclusion

Purpose

Xoft Axxent

Zeiss Intrabeam

Average energy difference vary by 1.7 keV or 5.6% for 50kV operating voltage

Do subtle spectral differences influence RBE?

Relative Biological Effectiveness (RBE)

"Inverse ratio of the amount of radiation required to produce a given effect compared to a reference radiation producing the same effect"

Complex quantity determined by:

- Radiation dose
- No. of fractions
- Dose rate
- Biological system or endpoint
- Radiation quality (Linear energy transfer)

Linear energy transfer in EBS

Lower electron energy >>> greater LET>>> More DNA damage

DNA damage

DNA Damage (II)

From Semenenko and Stewart, 2006

Purpose:

Average energy differences due to choice of material in anode, Gold (Intrabeam) vs. Tungsten (Xoft)

Workflow

EBS spectra

Tissue Geometry

Tissue Geometry

Electron spectra calculated at edge of sphere using EGSnrc

Workflow

Tissue Geometry

Monte Carlo Electron spectra Calculation

> GEANT4 EGSNRC

Generates electrons with high LET (0.1 – 6keV)

Generates electrons with lower LET (10 – 50keV)

Generates electrons with highest LET (0.2 – 1keV)

Electron spectra

Zeiss vs. Xoft: electron spectra 10mm

Electron spectra

Workflow

Tissue Geometry

Monte Carlo Electron spectra Calculation

RBE: Results

		Gland	Adipose
Distance from			
surface (mm)	Source type	RBE _(DSB)	RBE _(DSB)
	Axxent	1.50	1.54
0	Intrabeam	1.50	1.55

RBE: mapping

RBE MAP (1.47 - 1.53)

RBE: 40kV Axxent

40kVp vs 50kVp

		RB			
Material	Distance from surface (mm)	40keV	50keV	Reduction in kVp produces	
	0	1.520	1.506	no significant	
	5	1.520	1.505	difference in DDE $(DDE \sim 1.5)$	
Water	10	1.518	1.500	difference in KDE_{DSB} ($KDE \approx 1.5$)	
	15	1.520	1.501		
	20	1.518	1.495		

Zeiss Intrabeam and Xoft Axxent demonstrate similar RBE_{DSB} at all depths and tissues calculated ($RBE \approx 1.5$)

Radiation Quality plateau between 30 and 50kVp.